|
Papers
For papers listed by citation count, see
Google Scholar.
* denotes equal contribution.
2022
- Stochastic control with affine dynamics and extended quadratic costs (code)
S. Barratt and S. Boyd. IEEE Transactions on Automatic Control.
2021
- Learning convex optimization models (code)
A. Agrawal, S. Barratt, and S. Boyd. IEEE/CAA Journal of Automatica Sinica.
- Fitting feature-dependent Markov chains (code)
S. Barratt and S. Boyd. Manuscript.
- A distributed method for fitting Laplacian regularized stratified models (code, talk)
J. Tuck, S. Barratt, and S. Boyd. Journal of Machine Learning Research.
- Optimal representative sample weighting (code)
S. Barratt, G. Angeris, and S. Boyd. Statistics and Computing.
- Automatic repair of convex optimization problems (code)
S. Barratt, G. Angeris, and S. Boyd. Optimization and Engineering.
- Covariance prediction via convex optimization (code)
S. Barratt and S. Boyd. Manuscript.
- Portfolio construction using stratified models (code)
J. Tuck, S. Barratt, and S. Boyd. Machine Learning in Financial Markets: A Guide to Contemporary Practice.
- Convex optimization and implicit differentiation methods for control and estimation
S. Barratt. PhD Thesis.
- Least squares auto-tuning (code)
S. Barratt and S. Boyd. Engineering Optimization.
2020
- Minimizing a sum of clipped convex functions (code)
S. Barratt, G. Angeris, and S. Boyd. Optimization Letters.
- Convex optimization over risk-neutral probabilities (code)
S. Barratt, J. Tuck, and S. Boyd. Manuscript.
- Fitting a linear control policy to demonstrations with a Kalman constraint (code)
M. Palan, S. Barratt, A. McCauley, D. Sadigh, V. Sindhwani, and S. Boyd. Proceedings of Machine Learning Research.
- Multi-period liability clearing via convex optimal control (code)
S. Barratt and S. Boyd. Manuscript.
- Low rank forecasting (code)
S. Barratt, Y. Dong, and S. Boyd. Manuscript.
- Embedded convex optimization for control (video, code)
S. Boyd, A. Agrawal, and S. Barratt. Plenary lecture, IEEE Conference on Decision and Control.
- Learning convex optimization control policies (code)
A. Agrawal, S. Barratt, S. Boyd, and B. Stellato. Proceedings of Machine Learning Research.
2019
- Fitting a Kalman smoother to data (code)
S. Barratt and S. Boyd. Proceedings of the American Control Conference.
- Differentiable convex optimization layers (code, poster)
A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Zico Kolter. Advances in Neural Information Processing Systems.
- Learning probabilistic trajectory models of aircraft in terminal airspace from position data (code)
S. Barratt, M. Kochenderfer, and S. Boyd. IEEE Transactions on Intelligent Transportation Systems.
- Differentiating through a cone program (code)
A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi. Journal of Applied and Numerical Optimization.
2018
- Improved training with curriculum GANs
R. Sharma, S. Barratt, S. Ermon, and V. Pande. Manuscript.
- Systems and methods for discovering automatable tasks
Y. Kim, A. Qadir, A. Narayanaswamy, R. Murty, S. Barratt, and G. Nychis. US Patent.
- Optimizing for generalization in machine learning with cross-validation gradients
S. Barratt and R. Sharma. Manuscript.
- On the differentiability of the solution to convex optimization problems
S. Barratt. Manuscript.
- A note on the inception score
S. Barratt and R. Sharma. ICML Workshop on Theoretical Foundations and Applications of Deep Generative Models.
- Cooperative multi-agent reinforcement learning for low-level wireless communication
C. de Vrieze, S. Barratt, D. Tsai, and A. Sahai. Manuscript.
- Direct model predictive control
S. Barratt. ICML Workshop on Planning and Learning.
2017
- InterpNET: neural introspection for interpretable deep learning
S. Barratt. Neurips Interpretable ML Symposium.
- Active robotic mapping through deep reinforcement learning
S. Barratt. Manuscript.
2015
- A non-rigid point and normal registration algorithm with applications to learning from demonstrations
A. Lee, M. Goldstein, S. Barratt, and P. Abbeel. International Conference on Robotics and Automation.
|